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Let (G, ") be a group, and g € G.
® If 1) € End(G,-), we write ¥g for the image of g under 1.
® \We denote by A the left regular representation, and by p the
right regular representation.

e We write ¢: (G, ) — Aut(G, ) for the homomorphism that
sends g € G to the conjugation-by-g automorphism.

e If ¢ € End(G,-), we write [g,¢] = g -Yg~!, and
(G, 4] = ([g,¥] : g € G).

® If (G,-,0) is a skew brace, we denote by g~! the inverse of g
with respect to -, and by g the inverse of g with respect to o.

4/23



Let (G,-) be a group. The following data are equivalent.

5/23



Let (G,-) be a group. The following data are equivalent.

® An operation o such that (G,-,0) is a skew brace.

5/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a skew brace.

® A regular subgroup N < Perm(G) which normalises \(G).

5/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a skew brace.
® A regular subgroup N < Perm(G) which normalises \(G).
® A function vv: G — Aut(G,-) such that, for every g,h € G,

(g - "®h) = v(g)v(h).

5/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a skew brace.
® A regular subgroup N < Perm(G) which normalises \(G).
® A function vv: G — Aut(G,-) such that, for every g,h € G,

(g - "®h) = v(g)v(h).

The function « is called gamma function.

5/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a skew brace.
® A regular subgroup N < Perm(G) which normalises \(G).
® A function vv: G — Aut(G,-) such that, for every g,h € G,

(g - "®h) = v(g)v(h).

The function ~ is called gamma function. Explicitly,

5/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a skew brace.
® A regular subgroup N < Perm(G) which normalises \(G).
® A function vv: G — Aut(G,-) such that, for every g,h € G,

(g - "®h) = v(g)v(h).

The function ~ is called gamma function. Explicitly,

18 =g~ - (goh),

5/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a skew brace.
® A regular subgroup N < Perm(G) which normalises \(G).
® A function vv: G — Aut(G,-) such that, for every g,h € G,

(g - "®h) = v(g)v(h).

The function ~ is called gamma function. Explicitly,

18 =g~ - (goh),
N={\g)v(g): g € G}.

5/23



Let (G,-) be a group. The following data are equivalent.

6/23



Let (G,-) be a group. The following data are equivalent.

® An operation o such that (G,-,0) is a bi-skew brace.

6/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a bi-skew brace.

o A regular subgroup N < Perm(G) which normalises, and is
normalised by, A\(G).

6/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a bi-skew brace.

o A regular subgroup N < Perm(G) which normalises, and is
normalised by, A\(G).

® An antihomomorphism «y: (G,-) — Aut(G,-) such that, for
every g, h € G,

v(g - "@h) = y(g)v(h).

6/23



Let (G,-) be a group. The following data are equivalent.
® An operation o such that (G,-,0) is a bi-skew brace.

o A regular subgroup N < Perm(G) which normalises, and is
normalised by, A\(G).

® An antihomomorphism «y: (G,-) — Aut(G,-) such that, for
every g, h € G,

v(g - "@h) = y(g)v(h).

The function ~ is called bi-gamma function.
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The following are equivalent.
e 4 satisfies V[[G, ], G] < Z(G,-).
® (G,-,0) is a bi-skew brace, forgoh=g-Yg~!-h-¥g.
® The function ~y define by v(g) = 1(Yg™!) is a bi-gamma
function for (G, ).

If any of these holds, then N = {\(g)(Yg™!) : g € G} is a regular

subgroup of Perm(G) which normalises, and is normalised by, A\(G).

This result generalises [Koch, 2020], where the map % is abelian.
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A set-theoretic solution of the Yang-Baxter equation is a couple
(X, r), where X = () is a set, and

r: XxX—->XxX
(x,¥) = (ox(¥), 7y (x))

is a bijective map satisfying
(r X Idx)(IdX xr)(r X Idx) = (IdX ><r)(r X Idx)(ldx ><r).

We say that (X, r) is non-degenerate if, for every x € X, o, and 7y
are bijective, and involutive if r?> = idxx. For us, a solution is a
non-degenerate set-theoretic solution of the Yang-Baxter equation.
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Let (G,-,0) be a skew brace. Then

r:(g,h)— (g "-(goh),gl-(goh)ogoh)
is a solution for G.

The solution (G, r) is involutive if and only if (G, -, o) is a brace,
that is, if (G,-) is abelian.
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Let (G, -,0) be a skew brace. The opposite skew brace is (G, ', o),
where, for every g, he G, g h=nh-g.

Given a bi-skew brace (G, -, 0), we find (up to) four solutions for G:

(G,-,0) ~ (g,h)— (g7' - (goh),g~1-(goh)ogoh),
(G,”,0)~(g,h) — ((goh)-g ', (goh)-g Logoh),
(G,0,-)~(g,h) ~ (o(g-h),(Bo(g-h) " g-h),
(G,o',-)~ (g, h) ~ ((g-h)og,((g-h)og) ' g-h).
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We may rewrite the solutions so that they depend only on - and ~.
Let (G,-) be a group, and ~ be a gamma function.

The we get (up to) two solutions:

(g, h) = (@, CENT @1 g 2 E)py),
(g, h) s (€, 'y(b(g)v(g)h)flg).

If in addition ~y is a bi-gamma function, then we get (up to) other
two solutions:

(g, h) — ("€ Dp e D1 g p),
(ga h) = (g o 1) ’Y(h)g_la’Y(h)g_l)'
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Let (G,) be a group, and ) € End(G,-). IfY[[G,], G] < Z(G,"),
then we get (up to) four solutions:

(g, h) > (Ygt-h-Yg, gt h)-ht Vg g-Yg h-Y(h - g)),
(g.h)—~ (g g -hYg g% g- wh 1),
(g.h)— (Yg-h VgtV -ht - Yg7t. g h),
(g:h)— (g-h-Ph~t-g=t-¥h¥h~t . g ¥h)

These coincide with the solutions found in [Koch, 2020], where v is
abelian.
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Fix a finite Galois extension L/K with Galois group (G, -).

A Hopf Galois structure on L/K consists of a cocommutative
K-Hopf algebra H, together with an action of H on L satisfying
certain technical properties.

The Hopf Galois structures on L/K are in bijective correspondence
with the regular subgroups of Perm(G) normalised by \(G).

The K-Hopf algebra L[N]® corresponds to the subgroup N.

Moreover, the K-sub-Hopf algebras of L[N]¢ are in bijective
correspondence with the subgroups of N normalised by A(G).
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subgroup which normalises A\(G), while we need a regular subgroup
normalised by A(G).

If v is a bi-gamma function for (G,-), then

N={A(g)(g): g€ G}

is a regular subgroup of Perm(G) which normalises, and is
normalised by, \(G). In particular, L[N]® gives a Hopf Galois
structure on L/K.
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Let L/K be a finite Galois extension with Galois group (G, -), and
¥ € End(G, ) such that Y[[G, %], G] < Z(G,").

Then ~, defined by y(g) = «(Yg™1), is a bi-gamma function, and so
L[N]® gives a Hopf Galois structure on L/K, where

N={\g)("e") g€ G}

Can we determine the type of N7
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As in [Koch, 2020], we can always find (up to) five subgroups of N
normalised by A(G), and these correspond to five K-sub-Hopf
algebras of L[N]C.

For example, the A-points and p-points, introduced
in [Koch and Truman, 2020b]:
Av = NOAG) = {\g): g € ker(7)}
= {\(g) : g satisfies Vg € Z(G, ")},
Pn = NN p(G) ={p(g) : g satisfies v(g) = 1(g™")}
= {p(g) : g satisfies g - Yg~1 € Z(G,-)}.

Some of the five subgroups may coincide, but we can find examples
in which they are all distinct.
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® |f 1) is a fixed point free abelian endomorphism, then
N = (G,-) ([Childs, 2013], [Koch, 2020]).

e |f 4} is different from zero and idempotent, then for every
n>1 4" =1, and ¥G = {g € G : Yg = g}. We can use a
version of the Fitting’s Lemma for groups ([Caranti, 1985]) to
deduce that N = (ker()),-) x (¥G,-).
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